Go top
Paper information

Red blood cells in low Reynolds number flow: a vorticity-based characterization of shapes in two dimensions

A. Gallén, M. Castro, A. Hernández-Machado

Soft Matter Vol. 17, nº. 42, pp. 9587 - 9594

Summary:

Studies on the mechanical properties of red blood cells improve the diagnosis of some blood-related diseases. Some existing numerical methods have successfully simulated the coupling between a fluid and red blood cells. This paper introduces an alternative phase-field model formulation of two-dimensional cells that solves the vorticity and stream function that simplifies the numerical implementation. We integrate red blood cell dynamics immersed in a Poiseuille flow and reproduce previously reported morphologies (slippers or parachutes). In the case of flow in a very wide channel, we discover a new metastable shape referred to as ‘anti-parachute’ that evolves into a horizontal slipper centered on the channel. This sort of metastable morphology may contribute to the dynamical response of the blood.


Spanish layman's summary:

Introducimos una formulación de modelo de campo de fase de la dinámica de interacción de glóbulos rojos y el plasma a bajos números de Reynolds. Encontramos que la relación entre el tamaño de la célula y el dispositivo en el que está inmersa explica las diferentes formas observadas experimentalmente.


English layman's summary:

We introduce a phase-field model formulation of the interaction dynamics of red blood cells and plasma at low Reynolds numbers. We find that the ratio between the size of the cell and the device in which it is immersed explains the different shapes observed experimentally.


JCR Impact Factor and WoS quartile: 4,046 - Q2 (2021); 2,900 - Q2 (2023)

DOI reference: DOI icon https://doi.org/10.1039/D1SM00559F

Published on paper: November 2021.

Published on-line: September 2021.



Citation:
A. Gallén, M. Castro, A. Hernández-Machado, Red blood cells in low Reynolds number flow: a vorticity-based characterization of shapes in two dimensions. Soft Matter. Vol. 17, nº. 42, pp. 9587 - 9594, November 2021. [Online: September 2021]


    Research topics:
  • Biomechanics

pdf Preview
Request Request the document to be emailed to you.